Self-organizing migrating algorithm using covariance matrix adaptation evolution strategy for dynamic constrained optimization

نویسندگان

چکیده

The dynamic constrained optimization problems can be a challenge for the algorithms. They must tackle global optimum detection, as well change of environment. Recently, novel test suite was introduced. Furthermore, three well-performed evolutionary algorithms were compared based on it. experimental results show that each algorithm performed best different type problem. objective our work to develop an reflecting requirements arising from and regarding provided by tested In this work, we present optimization. hybridizes self-organizing migrating covariance matrix adaptation evolution strategy with constraints handling approach. To avoid premature convergence, solutions representing feasible regions do not affect rest population. Two clustering methods, exclusion radius, quantum particles are used preserve population diversity. performance is evaluated recently published state-of-the-art presented outperformed these in most cases, which indicates efficiency utilized mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Task Scheduling Algorithm Using Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in Cloud Computing

The cloud computing is considered as a computational model which provides the uses requests with resources upon any demand and needs.The need for planning the scheduling of the user's jobs has emerged as an important challenge in the field of cloud computing. It is mainly due to several reasons, including ever-increasing advancements of information technology and an increase of applications and...

متن کامل

A modified Covariance Matrix Adaptation Evolution Strategy with adaptive penalty function and restart for constrained optimization

In the last decades, a number of novel meta-heuristics and hybrid algorithms have been proposed to solve a great variety of optimization problems. Among these, constrained optimization problems are considered of particular interest in applications from many different domains. The presence of multiple constraints can make optimization problems particularly hard to solve, thus imposing the use of...

متن کامل

Scaling Up Covariance Matrix Adaptation Evolution Strategy Using Cooperative Coevolution

1: procedure CC-CMA-ES(dim, subN um, lambda, ub, lb, maxF Es) 2: pop(1 : 200, 1 : dim) ← random population 3: (best, best val) ← evaluate(pop) 4: f es ← 200 5: C ← dim × dim unit matrix 6: xw ← dim × 1 random vector 7: σ ← (ub − lb) ÷ 2 8: historyW indow ← 5 9: perf ormanceRecord ← ones(3, historyW indow) 10: while f es < maxF Es do 11: (subInf o, decomposerID) ← adaptiveDecompose(dim, subN um,...

متن کامل

Multimodal Optimization by Covariance Matrix Self-Adaptation Evolution Strategy with Repelling Subpopulations

During the recent decades, many niching methods have been proposed and empirically verified on some available test problems. They often rely on some particular assumptions associated with the distribution, shape, and size of the basins, which can seldom be made in practical optimization problems. This study utilizes several existing concepts and techniques, such as taboo points, normalized Maha...

متن کامل

Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy -

The covariance matrix adaptation evolution strategy (CMA-ES) rates among the most successful evolutionary algorithms for continuous parameter optimization. Nevertheless, it is plagued with some drawbacks like the complexity of the adaptation process and the reliance on a number of sophisticatedly constructed strategy parameter formulae for which no or little theoretical substantiation is availa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Swarm and evolutionary computation

سال: 2021

ISSN: ['2210-6502', '2210-6510']

DOI: https://doi.org/10.1016/j.swevo.2021.100936